Adaptive Graph Filters in Reproducing Kernel Hilbert Spaces: Design and Performance Analysis

نویسندگان

چکیده

This paper develops adaptive graph filters that operate in reproducing kernel Hilbert spaces. We consider both centralized and fully distributed implementations. first define nonlinear on graph-shifted versions of the input signal. then propose a least mean squares (GKLMS) algorithm to identify filters' model parameters. To reduce dictionary size GKLMS, we apply principles coherence check random Fourier features (RFF). The resulting algorithms have performance close GKLMS algorithm. Additionally, leverage structure derive diffusion KLMS (GDKLMS) algorithms. show that, unlike check-based approach, GDKLMS based RFF avoids use pre-trained through its data-independent fixed structure. conduct detailed study proposed RFF-based GDKLMS, conditions for convergence mean-squared senses are derived. Extensive numerical simulations can successfully adapt changes. Furthermore, strategies faster identification exhibit better tracking model-changing scenarios.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real reproducing kernel Hilbert spaces

P (α) = C(α, F (x, y)) = αF (x, x) + 2αF (x, y) + F (x, y)F (y, y), which is ≥ 0. In the case F (x, x) = 0, the fact that P ≥ 0 implies that F (x, y) = 0. In the case F (x, y) 6= 0, P (α) is a quadratic polynomial and because P ≥ 0 it follows that the discriminant of P is ≤ 0: 4F (x, y) − 4 · F (x, x) · F (x, y)F (y, y) ≤ 0. That is, F (x, y) ≤ F (x, y)F (x, x)F (y, y), and this implies that F ...

متن کامل

Some Properties of Reproducing Kernel Banach and Hilbert Spaces

This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels an...

متن کامل

Adaptive Estimation for Nonlinear Systems using Reproducing Kernel Hilbert Spaces

This paper extends a conventional, general framework for online adaptive estimation problems for systems governed by unknown nonlinear ordinary differential equations. The central feature of the theory introduced in this paper represents the unknown function as a member of a reproducing kernel Hilbert space (RKHS) and defines a distributed parameter system (DPS) that governs state estimates and...

متن کامل

Frame Analysis and Approximation in Reproducing Kernel Hilbert Spaces

We consider frames F in a given Hilbert space, and we show that every F may be obtained in a constructive way from a reproducing kernel and an orthonormal basis in an ambient Hilbert space. The construction is operator-theoretic, building on a geometric formula for the analysis operator defined from F . Our focus is on the infinite-dimensional case where a priori estimates play a central role, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal and Information Processing over Networks

سال: 2021

ISSN: ['2373-776X', '2373-7778']

DOI: https://doi.org/10.1109/tsipn.2020.3046217